True Online Temporal-Difference Learning

نویسندگان

  • Harm van Seijen
  • Ashique Rupam Mahmood
  • Patrick M. Pilarski
  • Marlos C. Machado
  • Richard S. Sutton
چکیده

The temporal-difference methods TD(λ) and Sarsa(λ) form a core part of modern reinforcement learning. Their appeal comes from their good performance, low computational cost, and their simple interpretation, given by their forward view. Recently, new versions of these methods were introduced, called true online TD(λ) and true online Sarsa(λ), respectively (van Seijen and Sutton, 2014). Algorithmically, these true online methods only make two small changes to the update rules of the regular methods, and the extra computational cost is negligible in most cases. However, they follow the ideas underlying the forward view much more closely. In particular, they maintain an exact equivalence with the forward view at all times, whereas the traditional versions only approximate it for small step-sizes. We hypothesize that these true online methods not only have better theoretical properties, but also dominate the regular methods empirically. In this article, we put this hypothesis to the test by performing an extensive empirical comparison. Specifically, we compare the performance of true online TD(λ)/Sarsa(λ) with regular TD(λ)/Sarsa(λ) on random MRPs, a real-world myoelectric prosthetic arm, and a domain from the Arcade Learning Environment. We use linear function approximation with tabular, binary, and non-binary features. Our results suggest that the true online methods indeed dominate the regular methods. Across all domains/representations the learning speed of the true online methods are often better, but never worse than that of the regular methods. An additional advantage is that no choice between traces has to be made for the true online methods. We show that new true online temporal-difference methods can be derived by making changes to the real-time forward view and then rewriting the update equations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Empirical Evaluation of True Online TD({\lambda})

The true online TD(λ) algorithm has recently been proposed (van Seijen and Sutton, 2014) as a universal replacement for the popular TD(λ) algorithm, in temporal-difference learning and reinforcement learning. True online TD(λ) has better theoretical properties than conventional TD(λ), and the expectation is that it also results in faster learning. In this paper, we put this hypothesis to the te...

متن کامل

True Online Emphatic TD(λ): Quick Reference and Implementation Guide

TD(λ) is the core temporal-difference algorithm for learning general state-value functions (Sutton 1988, Singh & Sutton 1996). True online TD(λ) is an improved version incorporating dutch traces (van Seijen & Sutton 2014, van Seijen, Mahmood, Pilarski & Sutton 2015). Emphatic TD(λ) is another variant that includes an “emphasis algorithm” that makes it sound for off-policy learning (Sutton, Mahm...

متن کامل

True Online Emphatic TD($\lambda$): Quick Reference and Implementation Guide

This document is a guide to the implementation of true online emphatic TD(λ), a model-free temporal-difference algorithm for learning to make long-term predictions which combines the emphasis idea (Sutton, Mahmood & White 2015) and the true-online idea (van Seijen & Sutton 2014). The setting used here includes linear function approximation, the possibility of off-policy training, and all the ge...

متن کامل

O2TD: (Near)-Optimal Off-Policy TD Learning

Temporal difference learning and Residual Gradient methods are the most widely used temporal difference based learning algorithms; however, it has been shown that none of their objective functions are optimal w.r.t approximating the true value function V . Two novel algorithms are proposed to approximate the true value function V . This paper makes the following contributions: • A batch algorit...

متن کامل

On a convergent off -policy temporal difference learning algorithm in on-line learning environment

In this paper we provide a rigorous convergence analysis of a “off”-policy temporal difference learning algorithm with linear function approximation and per time-step linear computational complexity in “online” learning environment. The algorithm considered here is TDC with importance weighting introduced by Maei et al. We support our theoretical results by providing suitable empirical results ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Machine Learning Research

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2016